English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecules 2018-Mar

Rapid Determination of Active Compounds and Antioxidant Activity of Okra Seeds Using Fourier Transform Near Infrared (FT-NIR) Spectroscopy.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Fangbo Xia
Chenchen Li
Ning Zhao
He Li
Qi Chang
Xinmin Liu
Yonghong Liao
Ruile Pan

Keywords

Abstract

Okra seeds (OSD) have been proved to possess significantly anti-fatigue activity and due to their high contents of flavonoids and polyphenols. While, the quality of OSD is easily affected by harvest time, region and other factors. In this research, the rapid method based on Fourier transform near infrared (FT-NIR) spectroscopy was developed for quality assessment of okra seeds. Firstly, 120 samples' spectra were acquired, and quantification of isoquercitrin, quercetin-3-O-gentiobioside, total phenols (TP) and antioxidant assays including 1-diphenyl-2-picrylhydrazyl (DPPH) scavenging, ferric reducing antioxidant power (FRAP) were conducted. Next, partial least squares (PLS) regression and full cross-validation were applied to develop calibration models for these data, and external validation was used to determine models' quality. The coefficient of determination for calibration ( R c 2 ), the root mean square error of cross validation (RMSECV) and the corresponding determination coefficients for cross-validation ( R cv 2 ) proved all these models have excellent precision. Besides, the residual predictive deviation (RPD) of models (4.07 for isoquercitrin, 4.04 for quercetin-3-O-gentiobioside, 9.79 for TP, 4.58 for DPPH and 4.12 for FRAP) also demonstrated that these models possessed good predicative ability. All these results showed that FT-NIR spectroscopy could be used to rapidly determine active compounds and antioxidant activity of okra seeds.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge