English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applied Physiology, Nutrition and Metabolism 2007-Dec

Rat hindlimb unloading down-regulates insulin like growth factor-1 signaling and AMP-activated protein kinase, and leads to severe atrophy of the soleus muscle.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Bing Han
Mei J Zhu
Changwei Ma
Min Du

Keywords

Abstract

Inactivity is known to induce muscle atrophy, which is associated with insulin and insulin-like growth factor-1 (IGF-1) resistance, but the associated mechanisms remain poorly defined. The hindlimb unloading model has been used to reduce muscle activity. The objective of this study was to show the effect of hindlimb unloading on IGF-1 signaling and AMP-activated protein kinase (AMPK) activity in rat soleus and extensor digitorum longus (EDL) muscles. Twelve 7-week-old male Sprague-Dawley rats were assigned to 2 treatments: (i) rats without hindlimb unloading (Con) and (ii) rats with hindlimb unloading (Unload). After 2 weeks of treatment, the soleus and EDL muscles were dissected and used for biochemical analyses. Hindlimb unloading induced severe muscle atrophy in soleus muscle (0.122+/-0.007 g for Con vs. 0.031+/-0.004 g for Unload, p<0.01), but only slight atrophy in EDL muscle. The phosphorylation of AMPK (p<0.05) and its downstream substrate, acetyl-CoA carboxylase (ACC) (p<0.01) were reduced in soleus muscle due to unloading. The concentration of insulin receptor substrate-1 (IRS-1) and phosphorylation of IRS-1 at Ser636-639 and Ser789 were also reduced. Downstream IGF-1 signaling was downregulated in Unload rats. A reduction in IGF-1 concentration in unloaded soleus muscle was also observed. A slight reduction in AMPK activity and IGF-1 signaling were observed in EDL muscle. Since AMPK controls the sensitivity of IGF-1 signaling through phosphorylation at Ser789, the reduction in AMPK activity is expected to reduce the response of downstream IGF-1 signaling to IGF-1; this, in combination with reduced IGF-1 concentration, might be responsible for the severe muscle atrophy observed in unloaded soleus muscle.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge