English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2012-Mar

Reactive oxygen species from chloroplasts contribute to 3-acetyl-5-isopropyltetramic acid-induced leaf necrosis of Arabidopsis thaliana.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shiguo Chen
Chunyan Yin
Reto Jörg Strasser
Govindjee
Chunlong Yang
Sheng Qiang

Keywords

Abstract

3-Acetyl-5-isopropyltetramic acid (3-AIPTA), a derivate of tetramic acid, is responsible for brown leaf-spot disease in many plants and often kills seedlings of both mono- and dicotyledonous plants. To further elucidate the mode of action of 3-AIPTA, during 3-AIPTA-induced cell necrosis, a series of experiments were performed to assess the role of reactive oxygen species (ROS) in this process. When Arabidopsis thaliana leaves were incubated with 3-AIPTA, photosystem II (PSII) electron transport beyond Q(A) (the primary plastoquinone acceptor of PSII) and the reduction of the end acceptors at the PSI acceptor side were inhibited; this was followed by increase in charge recombination and electron leakage to O(2), resulting in chloroplast-derived oxidative burst. Furthermore, the main antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) lost their activity. Excess ROS molecules directly attacked a variety of cellular components and subsequently caused electrolyte leakage, lipid peroxidation and cell membrane disruption. Finally, this led to cell destruction and leaf tissue necrosis. Thus, 3-AIPTA-triggered leaf necrosis of Arabidopsis was found to be a result of direct oxidative injury from the chloroplast-originated ROS burst initiated by the inhibition of normal photosynthetic electron transport.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge