English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neuro-Oncology 2015-Oct

Reactive oxygen species production has a critical role in hypoxia-induced Stat3 activation and angiogenesis in human glioblastoma.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mi Ok Yu
Kyung-Jae Park
Dong-Hyuk Park
Yong-Gu Chung
Sung-Gil Chi
Shin-Hyuk Kang

Keywords

Abstract

Glioblastoma is the most aggressive primary brain tumor with hypoxia-associated morphologic features including pseudopalisading necrosis and endothelial hyperplasia. It has been known that hypoxia can activate signal transducer and activator of transcription 3 (Stat3) and subsequently induce angiogenesis. However, the molecular mechanism underlying hypoxia-induced Stat3 activation has not been defined. In this study, we explored the possible implication of reactive oxygen species (ROS) in hypoxia-driven Stat3 activation in human glioblastoma. We found that hypoxic stress increased ROS production as well as Stat3 activation and that ROS inhibitors (diphenyleneiodonium, rotenone and myxothiazol) and an antioxidant (N-acetyl-L-cysteine) blocked Stat3 activation under hypoxic conditions. To determine a major route of ROS production, we tested whether nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4) is involved in hypoxia-induced ROS production. Nox4 expression was found to be increased at both mRNA and protein levels in hypoxic glioblastoma cells. In addition, siRNA-mediated knockdown of Nox4 expression abolished hypoxia induced Stat3 activation and vascular endothelial growth factor expression, which is associated with tumor cells' ability to trigger tube formation of endothelial cells in vitro. Our findings indicate that elevated ROS production plays a crucial role for Stat3 activation and angiogenesis in hypoxic glioblastoma cells.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge