English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical Science 2015-Jul

Recent advances in the understanding and care of familial hypercholesterolaemia: significance of the biology and therapeutic regulation of proprotein convertase subtilisin/kexin type 9.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Michael M Page
Claudia Stefanutti
Allan Sniderman
Gerald F Watts

Keywords

Abstract

Familial hypercholesterolaemia (FH) is an autosomal co-dominant disorder that markedly raises plasma low-density lipoprotein-cholesterol (LDL-C) concentration, causing premature atherosclerotic coronary artery disease (CAD). FH has recently come under intense focus and, although there is general consensus in recent international guidelines regarding diagnosis and treatment, there is debate about the value of genetic studies. Genetic testing can be cost-effective as part of cascade screening in dedicated centres, but the full mutation spectrum responsible for FH has not been established in many populations, and its use in primary care is not at present logistically feasible. Whether using genetic testing or not, cholesterol screening of family members of index patients with an abnormally raised LDL-C must be used to determine the need for early treatment to prevent the development of CAD. The metabolic defects in FH extend beyond LDL, and may affect triacylglycerol-rich and high-density lipoproteins, lipoprotein(a) and oxidative stress. Achievement of the recommended targets for LDL-C with current treatments is difficult, but this may be resolved by new drug therapies. Lipoprotein apheresis remains an effective treatment for severe FH and, although expensive, it costs less than the two recently introduced orphan drugs (lomitapide and mipomersen) for homozygous FH. Recent advances in understanding of the biology of proprotein convertase subtilisin/kexin type 9 (PCSK9) have further elucidated the regulation of lipoprotein metabolism and led to new drugs for effectively treating hypercholesterolaemia in FH and related conditions, as well as for treating many patients with statin intolerance. The mechanisms of action of PCSK9 inhibitors on lipoprotein metabolism and atherosclerosis, as well as their impact on cardiovascular outcomes and cost-effectiveness, remain to be established.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge