English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Science of the Total Environment 2018-Jun

Reconstructing clear water state and submersed vegetation on behalf of repeated flocculation with modified soil in an in situ mesocosm experiment in Lake Taihu.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xin Tang
Xiaolin Zhang
Te Cao
Leyi Ni
Ping Xie

Keywords

Abstract

The geo-engineering approach of modified soil flocculation has been widely applied to mitigate algal blooms and eutrophication in relatively small lakes. Nevertheless, its potential ecological risks and feasibility should be examined and identified prior to its application in large natural lakes given the multiple functions of these water bodies in human health and welfare. In situ mesocosm experiments on modified soil flocculation were performed in Lake Taihu during summer 2010 and 2011. Chitosan-modified kaolinite (CMK) soil was used to flocculate algal blooms and improve water transparency to facilitate the re-establishment of the submersed macrophyte Vallisneria natans in this shallow eutrophic lake. Moreover, the ecological effects of CMK soil were assessed. Results showed that repeated additions of CMK (0.3g/L for each time) improved water quality in terms of Chl-a, TN, and TP concentrations; TN/TP ratio; turbidity; redox conditions; and nitrification and denitrification activities. These effects lasted for 48days. After the fourth dose of CMK, the biomass of all phytoplankton categories, except for that of Cryptophyta, decreased by >90% (ca. 1-2×106cell/L or 0.38-0.55mg/L of wet weight). Zooplankton biomass markedly decreased after the first CMK addition, and copepods became dominant. These effects, however, did not last for the long term. Most importantly, submersed V. natans was restored successfully when water clarity and quality were improved through repeated CMK flocculation. Nevertheless, the indices of carbohydrate depletion and free amino acid accumulation indicated that the plant experienced physiological stresses. The reestablishment of V. natans reinforced the positive effects of repeated CMK dosing on water quality, and promoted a clear water state. V. natans is recommended for vegetative restoration in shallow eutrophic lakes given its facile transplantation, high stress tolerance, and physiological traits, which can be applied as indices of post-flocculation effects. In summary, the combination of repeated CMK dosing and revegetation of V. natans can feasibly improve water quality and initiate the restoration of a clear water state in shallow eutrophic lakes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge