English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Archives of Biochemistry and Biophysics 1996-Dec

Regulation and properties of bone alkaline phosphatase during vitamin C deficiency in guinea pigs.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
F Mahmoodian
A Gosiewska
B Peterkofsky

Keywords

Abstract

The precise physiological role of alkaline phosphatase is unknown, although evidence suggests it is involved in bone mineralization. Previous studies showed that serum and bone alkaline phosphatase activity is decreased during vitamin C deficiency. Some effects of scurvy, such as inhibition of collagen synthesis, are related to weight loss and subsequent induction of insulin-like growth factor binding proteins and they can be duplicated in fasted guinea pigs receiving vitamin C. We found that decreased alkaline phosphatase activity in bone and serum during scurvy was not completely due to the "fasting effect" and that the decrease in serum was due to loss of bone isoenzyme activity. There also was a decrease in immunoreactive enzyme protein and alkaline phosphatase mRNA concentrations in bone of scorbutic animals, indicating that synthesis of the enzyme was inhibited. Sialylation and addition of the glycosylphosphatidylinositol anchor to the enzyme in bone tissue were not affected by scurvy. The concentration of mRNA for osteocalcin, a bone-specific marker, also fell during scurvy and to a much greater extent than either alkaline phosphatase or type I collagen mRNAs, while osteopontin mRNA concentrations increased. These results differ from the reported role of ascorbic acid on the pattern of expression of these proteins during differentiation of osteoblasts in culture. The decreased expression of collagen, alkaline phosphatase, and osteocalcin could explain the defects in bone caused by scurvy.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge