English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 2003-Jul

Regulation of gibberellin 20-oxidase gene expression and gibberellin content in citrus by temperature and citrus exocortis viroid.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ana M Vidal
Waddi Ben-Cheikh
Manuel Talón
José L García-Martínez

Keywords

Abstract

A cDNA clone coding for a gibberellin (GA) 20-oxidase ( CcGA20ox1), an enzyme of GA biosynthesis, which when expressed in vitro catalyzed the conversion of GA(12) to GA(9) and of GA(53) to GA(20), was isolated from the citrus hybrid Carrizo citrange (C itrus sinensis x Poncirus trifoliata). Transcripts of CcGA20ox1 were abundant in the apex and leaves and much less abundant in internodes, nodes and roots. Seedlings of Carrizo citrange cultured under a 32 degrees C/27 degrees C (day/night) regime elongated more than seedlings growing under 17 degrees C/12 degrees C conditions. The effect of higher temperature was associated with more CcGA20ox1 transcripts and with higher content of GA(1), the main active GA in citrus, in the shoot. The infection of Etrog citron ( Citrus medica) plants with citrus exocortis viroid (CEVd), which produces a stunted phenotype, reduced the levels of transcripts in the apical shoot hybridizing to the gene CcGA20ox1 of Carrizo citrange and the content of GA(1). Thus GA(1) content correlated with CcGA20ox1 transcript levels. In contrast, results for gibberellic acid (GA(3)) and paclobutrazol applications to Carrizo citrange showed that CcGA20ox1 expression was subject to feed-back regulation. These observations indicate that the feed-back regulation of GA20ox operates mostly when the levels of active GAs have been dramatically altered. The results also show that the growth reduction induced by environmental (temperature) and biotic (CEVd) factors may be partially due to the modulation of the expression of GA20ox genes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge