English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Endocrinology 2005-Oct

Regulation of gonadotropin-releasing hormone secretion by cannabinoids.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
C Michael Gammon
G Mark Freeman
Weihua Xie
Wihua Xie
Sandra L Petersen
William C Wetsel

Keywords

Abstract

Cannabinoids (CBs) exert untoward effects on reproduction by reducing LH secretion and suppressing gonadal function. Recent evidence suggests these effects are due primarily to hypothalamic dysfunction; however, the mechanism is obscure. Using immortalized hypothalamic GnRH neurons, we find these cells produce and secrete at least two different endocannabinoids. After release, 2-arachidonyl monoacylglycerol and anandamide are rapidly transported into GnRH neurons and are degraded to other lipids by fatty-acid amide hydrolase. The immortalized GnRH neurons also possess CB1 and CB2 receptors that are coupled to Gi/Go proteins whose activation leads to inhibition of GnRH secretion. In perifusion experiments, CBs block pulsatile release of GnRH. When a CB receptor agonist is delivered into the third ventricle of adult female mice, estrous cycles are prolonged by at least 2 d. Although in situ hybridization experiments suggest either that GnRH neurons in vivo do not possess CB1 receptors or that they are very low, transcripts are localized in close proximity to these neurons. Inasmuch as GnRH neurons in vivo possess G protein receptors that are coupled to phospholipase C and increased intracellular Ca2+, these same neurons should also be able to synthesize endocannabinoids. These lipids, in turn, could bind to CB receptors on neighboring cells, and perhaps GnRH neurons, to exert feedback control over GnRH function. This network could serve as a novel mechanism for regulating GnRH secretion where reproductive functions as diverse as the onset of puberty, timing of ovulation, duration of lactational infertility, and initiation/persistence of menopause may be affected.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge