English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Surgical Research 2019-Jul

Repair Effects of KGF on Ischemia-Reperfusion-Induced Flap Injury via Activating Nrf2 Signaling.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Yueping Mao
Xiaoyan Chen
Yue Xia
Xiaoyuan Xie

Keywords

Abstract

Ischemia-reperfusion (IR) injury is a main cause to and the mechanism of necrosis after flap transplantation. Researches were hardly conducted on the role and possible mechanism of keratinocyte growth factor (KGF) in association with IR flap injury.

MATERIALS AND METHODS
A CoCl2-stimulated hypoxia cell model was established to investigate the effects of KGF on cell viability, apoptosis, cell cycle, and reactive oxygen species level. The experiments were performed by cell counting kit-8 and flow cytometry as required. Meanwhile, the expressions of cell cycle-related and nuclear factor E2-related factor 2 (Nrf2) signaling-related genes were determined using quantitative real-time PCR and Western blot. The right dorsolateral areas of Institute of Cancer Research mice were marked as flaps, the pedicle of which formed an IR process through clamping and loosening. Tissue morphologies were observed using hematoxylin and eosin staining 24 h after the surgery. The effects of KGF on cell apoptosis and associated genes expressions were studied by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling, immunohistochemistry, and Western blot.

RESULTS
HaCAT cells treated with 40 μM CoCl2 could not only reduce cell viability, promote cell apoptosis, arrest G1 phase of cell cycle and increase the activity of reactive oxygen species but also downregulate the expressions of c-myc, c-fos, transforming growth factor-α, Nrf2, heme oxygenase-1, and gamma-glutamyl cysteine synthetase. Additional recombinant human KGF, on one hand, could protect the cells from hypoxia injury. On the other hand, recombinant human KGF could significantly inhibit cell apoptosis, increase KGF activity, and increase the Nrf2, heme oxygenase-1, and gamma-glutamyl cysteine synthetase proteins levels in IR flap tissues.

KGF played an important role in protecting mice flaps from IR injury, and the possible mechanism was involved in activating the Nrf2 signaling.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge