English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chemical Ecology 2016-Feb

Repellent and Attractive Effects of α-, β-, and Dihydro-β- Ionone to Generalist and Specialist Herbivores.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
L A Cáceres
S Lakshminarayan
K K-C Yeung
B D McGarvey
A Hannoufa
M W Sumarah
X Benitez
I M Scott

Keywords

Abstract

In plants, the oxidative cleavage of carotenoid substrates produces volatile apocarotenoids, including α-ionone, β-ionone, and dihydro-β-ionone, compounds that are important in herbivore-plant communication. For example, β-ionone is part of an induced defense in canola, Brassica napus, and is released following wounding by herbivores. The objectives of the research were to evaluate whether these volatile compounds would: 1) be released in higher quantities from plants through the over-expression of the carotenoid cleavage dioxygenase1 (CCD1) gene and 2) cause herbivores to be repelled or attracted to over-expressing plants relative to the wild-type. In vivo dynamic headspace collection of volatiles coupled with gas chromatography-mass spectrometry was used to determine volatile organic compounds (VOC) in the headspace of the Arabidopsis thaliana ecotype Columbia-0 (L.) over-expressing the AtCCD1 gene. The analytical method allowed the detection of β-ionone in the Arabidopsis headspace where emission rates ranged between 2 and 5-fold higher compared to the wild type, thus corroborating the in vivo enhancement of gene expression. A two chamber choice test between wild type and AtCCD1 plants revealed that crucifer flea beetle Phyllotreta cruciferae (Goeze) adults were repelled by the AtCCD1 plants with the highest transcription and β-ionone levels. α-Ionone and dihydro-β-ionone were not found in the headspace analysis, but solutions of the three compounds were tested in the concentration range of β-ionone found in the Arabidopsis headspace (0.05 to 0.5 ng/μl) in order to assess their biological activity with crucifer flea beetle, two spotted spider mite Tetranychus urticae (Koch), and silverleaf whiteflies Bemisia tabaci (Gennadius). Choice bioassays demonstrated that β-ionone has a strong repellent effect toward both the flea beetle and the spider mite, and significant oviposition deterrence to whiteflies. In contrast, dihydro-β-ionone had attractant properties, especially to the crucifer flea beetle, while α-ionone did not show any significant activity. These findings demonstrate how regulating genes of the carotenoid pathway can increase herbivore deterrent volatiles, a novel tool for insect pest management.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge