English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Cancer Research 2012-Jun

Repression of malignant tumor progression upon pharmacologic IGF1R blockade in a mouse model of insulinoma.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Adrian Zumsteg
Christoph Caviezel
Laura Pisarsky
Karin Strittmatter
Carlos García-Echeverría
Francesco Hofmann
Gerhard Christofori

Keywords

Abstract

NVP-AEW541, a specific ATP-competitive inhibitor of the insulin-like growth factor-1 receptor (IGF1R) tyrosine kinase, has been reported to interfere with tumor growth in various tumor transplantation models. We have assessed the efficacy of NVP-AEW541 in repressing tumor growth and tumor progression in the Rip1Tag2 transgenic mouse model of pancreatic β-cell carcinogenesis. In addition, we have tested NVP-AEW541 in Rip1Tag2;RipIGF1R double-transgenic mice which show accelerated tumor growth and increased tumor malignancy compared with Rip1Tag2 single-transgenic mice. Previously, we have shown that high levels of IGF-2, a high-affinity ligand for IGF1R, are required for Rip1Tag2 tumor cell survival and tumor growth. Unexpectedly, treatment of Rip1Tag2 mice with NVP-AEW541 in prevention and intervention trials neither did affect tumor growth nor tumor cell proliferation and apoptosis. Yet, it significantly repressed progression to tumor malignancy, that is, the rate of the transition from differentiated adenoma to invasive carcinoma. Treatment of Rip1Tag2;RipIGF1R double-transgenic mice resulted in moderately reduced tumor volumes and increased rates of tumor cell apoptosis. Sustained expression of IGF-2 and of the IGF-2-binding form of insulin receptor (IR-A) in tumor cells suggests a compensatory role of IR-A upon IGF1R blockade. The results indicate that inhibition of IGF1R alone is not sufficient to efficiently block insulinoma growth and imply an overlapping role of IGF1R and insulin receptor in executing mitogenic and survival stimuli elicited by IGF-2. The reduction of tumor invasion upon IGF1R blockade on the other hand indicates a critical function of IGF1R signaling for the acquisition of a malignant phenotype.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge