English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2017-Oct

Resin glycosides evoke the Gaba release by sodium- and/or calcium-dependent mechanism.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
José Manuel Castro-García
Ismael León-Rivera
María Del Carmen Gutiérrez

Keywords

Abstract

Ipomoea tyrianthina Lindley (syn. I. orizabensis Pelletan, Lebed. ex Steud., Convolvulaceae) is known as a purgative, but it has been also used in Mexican traditional medicine in the treatment of seizures and pain for their anticonvulsive, hypnotic and sedative properties. Some glycolipids isolated from this plant have shown significant effects on Central Nervous System, modifying inhibitory or excitatory processes. The mechanism for such activity it is not clear; studies with these metabolites have suggested that a pore-forming mechanism is involved in their activity. Therefore, the present work explores a possible not pore-forming mechanism related to the effect of four resin glycosides, Scammonin 1 (S-1), tyrianthin C (T-C), tyrianthin A (T-A) and tyrianthinic acid VI (TA-VI), isolated from Ipomoea tyrianthina root on GABAergic transmission system in cerebral cortex slices of mouse brain in an in vitro model. The results obtained show that all glycolipids tested evoked endogenous GABA release and increased its concentration within the incubation medium compared with controls; T-C demonstrated a dose-dependent effect. Sodium absence and guvacine presence did not affect significantly the activity of S-1 and T-C in contrast to T-A and TA-VI. S-1 and T-C effects were calcium-dependent, where GABA concentrations were considerably reduced. These results suggest that the increase of endogenous γ-aminobutyric acid (GABA) released evoked by these glycolipids is possibly done through a Na+- and/or Ca2+-dependent mechanisms, discarding a pore-forming mechanism.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge