English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Plant Science 2019

Response of a Pioneering Species (Leptospermum scoparium J.R.Forst. & G.Forst.) to Heterogeneity in a Low-Fertility Soil.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Maria Gutiérrez-Ginés
Engracia Madejón
Niklas Lehto
Roger McLenaghen
Jacqui Horswell
Nicholas Dickinson
Brett Robinson

Keywords

Abstract

Root foraging may increase plant nutrient acquisition at the cost of reducing the total volume of soil explored, thereby reducing the chance of the roots encountering additional patches. Patches in soil seldom contain just one nutrient: the patch may also have distinct textural, hydrological, and toxicological characteristics. We sought to determine the characteristics of root foraging by a pioneering species, Leptospermum scoparium, using pot trials and rhizobox experiments with patches of biosolids. The growth of L. scoparium was increased by <50 t/ha equiv. of biosolids but higher doses were inhibitory. Roots foraged patches of biosolids in a low-fertility soil. There was no evidence of chemotaxis, rather, the roots proliferated toward the patch of biosolids, following chemical gradients of nitrate. While the biosolids also contained high concentrations of other nutrients (P, K, and S), only significant chemical gradients of nitrate were found. Once the roots encountered a patch of biosolids, the growth of the plant increased to a level similar to plants growing in soil homogeneously mixed with biosolids or surface-applied biosolids. Our results indicate that roots forage nitrate, which is mobile in soil, and that gradients of nitrate may lead to patches containing other less mobile nutrients, such as phosphate or potassium.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge