English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2012-Jun

Responses of Arabidopsis thaliana plant lines differing in hydroxylation of aliphatic glucosinolate side chains to feeding of a generalist and specialist caterpillar.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
F Rohr
C Ulrichs
M Schreiner
R Zrenner
I Mewis

Keywords

Abstract

Plants contain variable chemical compositions which play a role in direct defense against phytophagous insects. Glucosinolates (GSs) are the predominant secondary metabolites and defense compounds in brassicaceous species. As a consequence of co-evolution between adapted crucifer-feeding specialists and their associated host-plants, specific plant-insect interactions have developed in a divergent manner from non-adapted generalists. Therefore, generalist and specialist insects may provoke different insect-inducible plant responses. Here, we have investigated the specific biochemical and molecular plant responses of Arabidopsis thaliana (L.) induced by the generalist Spodoptera exigua (Hübner) and the specialist Pieris brassicae L. To get more detailed information about herbivore-mediated-specific plant responses in different chemotypes within one species, we used multiple plant lines with either the non-hydroxylated 3-methylsulfinylpropyl GS or the hydroxylated 3-hydroxypropyl GS in a comparable genetic background. Caterpillar feeding induced a stronger GS accumulation in the 3-hydroxypropyl GS chemotype than the 3-methylsulfinylpropyl GS chemotype, considering the overall insect-mediated changes in aliphatic and indole GS levels in all lines. Herbivory by the generalist S. exigua and the specialist P. brassicae had similar effects on biochemical and transcriptional response pattern. Contrary to the paradigm that specialists may minimize the induction of chemical defenses, we observed a higher elicitation of GSs by the specialist species. The accumulation of especially 1-methoxy-indol-3-ylmethyl GS and the induced gene transcripts by the two species point to an insect-mediated activation of the jasmonic acid signaling pathway in the plant lines.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge