English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Chemical Ecology 2015-Mar

Restoring (E)-β-Caryophyllene Production in a Non-producing Maize Line Compromises its Resistance against the Fungus Colletotrichum graminicola.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Chalie Assefa Fantaye
Diana Köpke
Jonathan Gershenzon
Jörg Degenhardt

Keywords

Abstract

The sesquiterpene (E)-β-caryophyllene is emitted from maize (Zea mays) leaves and roots in response to herbivore attack. This compound serves as a signal for the attraction of herbivore enemies and is present in most European maize varieties. However, most North American maize lines have lost the ability to produce (E)-β-caryophyllene. Previously, we showed that restoring the ability to synthesize (E)-β-caryophyllene in a non-producing maize line improved its resistance against the root herbivore Diabrotica virgifera virgifera. However, it is largely unknown whether this modification affects the resistance to other pests. In this study, we investigated the response of constitutively (E)-β-caryophyllene-producing transgenic lines to infection by a hemibiotrophic fungus Colletotrichum graminicola. Our results showed that restoring (E)-β-caryophyllene synthesis in a Hi-II genetic background enhanced the susceptibility of the plant to C. graminicola infection rather than increasing its resistance. This modification did not alter the baseline levels of plant defense hormones and metabolites. Nor did (E)-β-caryophyllene production modify the expression of anti-fungal defense genes. Instead, the addition of (E)-β-caryophyllene seemed to directly stimulate fungal growth. In an in vitro antifungal assay, we found that (E)-β-caryophyllene stimulated hyphal growth of C. graminicola and Fusarium graminearum. Thus, although restoring (E)-β-caryophyllene production in a non-producing maize line may improve the resistance of the plant against herbivores, it may compromise its resistance to major fungal pathogens. This might explain the loss of (E)-β-caryophyllene during maize breeding in environments where C. graminicola and Fusarium graminearum are prevalent.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge