English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
CNS drug reviews 2005

Retigabine: chemical synthesis to clinical application.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
G Blackburn-Munro
W Dalby-Brown
N R Mirza
J D Mikkelsen
R E Blackburn-Munro

Keywords

Abstract

Retigabine [D23129; N-(2-amino-4-(4-fluorobenzylamino)-phenyl)carbamic acid ethyl ester] is an antiepileptic drug with a recently described novel mechanism of action that involves opening of neuronal K(V)7.2-7.5 (formerly KCNQ2-5) voltage-activated K(+) channels. These channels (primarily K(V)7.2/7.3) enable generation of the M-current, a subthreshold K(+) current that serves to stabilize the membrane potential and control neuronal excitability. In this regard, retigabine has been shown to have a broad-spectrum of activity in animal models of electrically-induced (amygdala-kindling, maximal electroshock) and chemically-induced (pentylenetetrazole, picrotoxin, NMDA) epileptic seizures. These encouraging results suggest that retigabine may also prove useful in the treatment of other diseases associated with neuronal hyperexcitability. Neuropathic pain conditions are characterized by pathological changes in sensory pathways, which favor action potential generation and enhanced pain transmission. Although sometimes difficult to treat with conventional analgesics, antiepileptics can relieve some symptoms of neuropathic pain. A number of recent studies have reported that retigabine can relieve pain-like behaviors (hyperalgesia and allodynia) in animal models of neuropathic pain. Neuronal activation within several key structures within the CNS can also be observed in various animal models of anxiety. Moreover, amygdala-kindled rats, which have a lowered threshold for neuronal activation, also display enhanced anxiety-like responses. Retigabine dose-dependently reduces unconditioned anxiety-like behaviors when assessed in the mouse marble burying test and zero maze. Early clinical studies have indicated that retigabine is rapidly absorbed and distributed, and is resistant to first pass metabolism. Tolerability is good in humans when titrated up to its therapeutic dose range (600-1200 mg/day). No tolerance, dependence or withdrawal potential has been reported, although adverse effects can include mild dizziness, headache, nausea and somnolence. Thus, retigabine may prove to be useful in the treatment of a diverse range of disease states in which neuronal hyperexcitability is a common underlying factor.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge