English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Journal 2013-Oct

Rhamnogalacturonan II structure shows variation in the side chains monosaccharide composition and methylation status within and across different plant species.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Martin Pabst
Richard M Fischl
Lothar Brecker
Willy Morelle
Alexander Fauland
Harald Köfeler
Friedrich Altmann
Renaud Léonard

Keywords

Abstract

A paradigm regarding rhamnogalacturonans II (RGII) is their strictly conserved structure within a given plant. We developed and employed a fast structural characterization method based on chromatography and mass spectrometry, allowing analysis of RGII side chains from microgram amounts of cell wall. We found that RGII structures are much more diverse than so far described. In chain A of wild-type plants, up to 45% of the l-fucose is substituted by l-galactose, a state that is seemingly uncorrelated with RGII dimerization capacity. This led us to completely reinvestigate RGII structures of the Arabidopsis thaliana fucose-deficient mutant mur1, which provided insights into RGII chain A biosynthesis, and suggested that chain A truncation, rather than l-fucose to l-galactose substitution, is responsible for the mur1 dwarf phenotype. Mass spectrometry data for chain A coupled with NMR analysis revealed a high degree of methyl esterification of its glucuronic acid, providing a plausible explanation for the puzzling RGII antibody recognition. The β-galacturonic acid of chain A exhibits up to two methyl etherifications in an organ-specific manner. Combined with variation in the length of side chain B, this gives rise to a family of RGII structures instead of the unique structure described up to now. These findings pave the way for studies on the physiological roles of modulation of RGII composition.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge