English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Toxicology and Chemistry 2018-Oct

Rhizosphere interactions between copper oxide nanoparticles and wheat root exudates in a sand matrix: Influences on copper bioavailability and uptake.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Paul McManus
Joshua Hortin
Anne J Anderson
Astrid R Jacobson
David W Britt
Joseph Stewart
Joan E McLean

Keywords

Abstract

The impact of copper oxide nanoparticles (CuONPs) on crop production is dependent on the biogeochemistry of Cu in the rooting zone of the plant. The present study addressed the metabolites in wheat root exudates that increased dissolution of CuONPs and whether solubility correlated with Cu uptake into the plant. Bread wheat (Triticum aestivum cv. Dolores) was grown for 10 d with 0 to 300 mg Cu/kg as CuONPs in sand, a matrix deficient in Fe, Zn, Mn, and Cu for optimum plant growth. Increased NP doses enhanced root exudation, including the Cu-complexing phytosiderophore, 2'-deoxymugineic acid (DMA), and corresponded to greater dissolution of the CuONPs. Toxicity, observed as reduced root elongation, was attributable to a combination of CuONPs and dissolved Cu complexes. Geochemical modeling predicted that the majority of the solution phase Cu was complexed with citrate at low dosing or DMA at higher dosing. Altered biogeochemistry within the rhizosphere correlated with bio-responses via exudate type, quantity, and metal uptake. Exposure of wheat to CuONPs led to dose-dependent decreases in Fe, Ca, Mg, Mn, and K in roots and shoots. The present study is relevant to growth of a commercially important crop, wheat, in the presence of CuONPs as a fertilizer, fungicide, or pollutant. Environ Toxicol Chem 2018;37:2619-2632. © 2018 SETAC.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge