English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Science and Pollution Research 2016-Jul

Rhizosphere of Avicennia marina (Forsk.) Vierh. as a landmark for polythene degrading bacteria.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Mohd Shahnawaz
Manisha K Sangale
Avinash B Ade

Keywords

Abstract

Due to high durability, cheap cost, and ease of manufacture, 311 million tons of plastic-based products are manufactured around the globe per annum. The slow/least rate of plastic degradation leads to generation of million tons of plastic waste per annum, which is of great environmental concern. Of the total plastic waste generated, polythene shared about 64 %. Various methods are available in the literature to tackle with the plastic waste, and biodegradation is considered as the most accepted, eco-friendly, and cost-effective method of polythene waste disposal. In the present study, an attempt has been made to isolate, screen, and characterize the most efficient polythene degrading bacteria by using rhizosphere soil of Avicennia marina as a landmark. From 12 localities along the west coast of India, a total of 123 bacterial isolates were recorded. Maximum percent weight loss (% WL; 21.87 ± 6.37 %) was recorded with VASB14 at pH 3.5 after 2 months of shaking at room temperature. Maximum percent weight gain (13.87 ± 3.6 %) was reported with MANGB5 at pH 7. Maximum percent loss in tensile strength (% loss in TS; 87.50 ± 4.8 %) was documented with VASB1 at pH 9.5. The results based on the % loss in TS were only reproducible. Further, the level of degradation was confirmed by scanning electron microscopic (SEM) and Fourier transform infrared spectroscopy (FTIR) analysis. In SEM analysis, scions/crakes were found on the surface of the degraded polythene, and mass of bacterial cell was also recorded on the weight-gained polythene strips. Maximum reduction in carbonyl index (4.14 %) was recorded in untreated polythene strip with Lysinibacillus fusiformis strain VASB14/WL. Based on 16S ribosomal RNA (rRNA) gene sequence homology, the most efficient polythene degrading bacteria were identified as L. fusiformis strainVASB14/WL and Bacillus cereus strain VASB1/TS.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge