English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Science 2014-Jul

Rice RCN1/OsABCG5 mutation alters accumulation of essential and nonessential minerals and causes a high Na/K ratio, resulting in a salt-sensitive phenotype.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shuichi Matsuda
Hidetaka Nagasawa
Nobuhiro Yamashiro
Naoko Yasuno
Toshihiro Watanabe
Hideyuki Kitazawa
Sho Takano
Yoshihiko Tokuji
Masayuki Tani
Itsuro Takamure

Keywords

Abstract

Mineral balance and salt stress are major factors affecting plant growth and yield. Here, we characterized the effects of rice (Oryza sativa L.) reduced culm number1 (rcn1), encoding a G subfamily ABC transporter (OsABCG5) involved in accumulation of essential and nonessential minerals, the Na/K ratio, and salt tolerance. Reduced potassium and elevated sodium in field-grown plants were evident in rcn1 compared to original line 'Shiokari' and four independent rcn mutants, rcn2, rcn4, rcn5 and rcn6. A high Na/K ratio was evident in the shoots and roots of rcn1 under K starvation and salt stress in hydroponically cultured plants. Downregulation of SKC1/OsHKT1;5 in rcn1 shoots under salt stress demonstrated that normal function of RCN1/OsABCG5 is essential for upregulation of SKC1/OsHKT1;5 under salt stress. The accumulation of various minerals in shoots and roots was also altered in the rcn1 mutant compared to 'Shiokari' under control conditions, potassium starvation, and salt and d-sorbitol treatments. The rcn1 mutation resulted in a salt-sensitive phenotype. We concluded that RCN1/OsABCG5 is a salt tolerance factor that acts via Na/K homeostasis, at least partly by regulation of SKC1/OsHKT1;5 in shoots.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge