English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Molecular Biology 2015-Feb

Rice phenylalanine ammonia-lyase gene OsPAL4 is associated with broad spectrum disease resistance.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Bradley W Tonnessen
Patricia Manosalva
Jillian M Lang
Marietta Baraoidan
Alicia Bordeos
Ramil Mauleon
James Oard
Scot Hulbert
Hei Leung
Jan E Leach

Keywords

Abstract

Most agronomically important traits, including resistance against pathogens, are governed by quantitative trait loci (QTL). QTL-mediated resistance shows promise of being effective and long-lasting against diverse pathogens. Identification of genes controlling QTL-based disease resistance contributes to breeding for cultivars that exhibit high and stable resistance. Several defense response genes have been successfully used as good predictors and contributors to QTL-based resistance against several devastating rice diseases. In this study, we identified and characterized a rice (Oryza sativa) mutant line containing a 750 bp deletion in the second exon of OsPAL4, a member of the phenylalanine ammonia-lyase gene family. OsPAL4 clusters with three additional OsPAL genes that co-localize with QTL for bacterial blight and sheath blight disease resistance on rice chromosome 2. Self-pollination of heterozygous ospal4 mutant lines produced no homozygous progeny, suggesting that homozygosity for the mutation is lethal. The heterozygous ospal4 mutant line exhibited increased susceptibility to three distinct rice diseases, bacterial blight, sheath blight, and rice blast. Mutation of OsPAL4 increased expression of the OsPAL2 gene and decreased the expression of the unlinked OsPAL6 gene. OsPAL2 function is not redundant because the changes in expression did not compensate for loss of disease resistance. OsPAL6 co-localizes with a QTL for rice blast resistance, and is down-regulated in the ospal4 mutant line; this may explain enhanced susceptibility to Magnoporthe oryzae. Overall, these results suggest that OsPAL4 and possibly OsPAL6 are key contributors to resistance governed by QTL and are potential breeding targets for improved broad-spectrum disease resistance in rice.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge