English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Pollution 2000-Sep

Role of climate, crown position, tree age and altitude in calculated ozone flux into needles of Picea abies and Pinus cembra: a synthesis.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
G Wieser
R Häsler
B Götz
W Koch
W M Havranek

Keywords

Abstract

Ozone (O(3)) flux into Norway spruce (Picea abies) and cembran pine (Pinus cembra) needles was estimated under ambient conditions at six rural sites between 580 and 1950 m a.s.l. We also assessed age-related differences in O(3) flux by examining changes in leaf conductance across the life span of Norway spruce. At the leaf level O(3) flux into the needles was effectively controlled by stomatal conductance and, hence by factors such as temperature, irradiance and humidity, which control stomatal conductance. Seasonal variations in O(3) flux were mainly attributed to the course of the prevailing temperature. During the growing season, however, data have emphasised leaf-air vapour pressure difference as the environmental factor most likely to control stomatal conductance and O(3) flux into the needles. In the sun crown stomatal conductance averaged over the growing season decreased with increasing tree age from 42.0+/-3.5 mmol O(3) m(-2) s(-1) in 17-year-old trees to 7.1+/-1.0 mmol O(3) m(-2) s(-1) in 216-year-old trees, indicating that O(3) concentration in the substomatal cavities is higher in young than in old trees. Independent from tree age stomatal conductance and O(3) flux were approximately 50% lower in shade needles as compared to sun-exposed needles. Stomatal conductance was also greater in the current flush (24+/-5.6 mmol O(3) m(-2) s(-1)) and in 1-year old needles (16+/-4 mmol O(3) m(-2) s(-1)) than in older needle age classes (12+/-1 mmol O(3) m(-2) s(-1), averaged across the four older needle age classes). In trees similar in age (60-65 years old) average O(3) flux into sun needles increased from 0.55+/-0.36 nmol m(-2) s(-1) at the valley floor to 0.9 nmol m(-2) s(-1) in 1950 m a.s.l. Cumulative O(3) uptake during the vegetation period increased from 11.4+/-1.7 mol m(-2) in the valley to 14 mol m(-2) at the alpine timberline. Although stomatal conductance provides the principal limiting factor for O(3) flux, additional field research is necessary in order to improve our understanding concerning the quantitative 'physiological threshold dose' which internally can be active and can have adverse effects of O(3) on forest trees.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge