English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of toxicology and environmental health 1988

Role of glutathione in the toxicity of the sesquiterpene lactones hymenoxon and helenalin.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
J C Merrill
H L Kim
S Safe
C A Murray
M A Hayes

Keywords

Abstract

Hymenoxon and helenalin are toxic sesquiterpene lactones present in the toxic range plants Hymenoxys odorata and Helenium microcephalum. Helenalin (25 mg/kg) or hymenoxon (30 mg/kg) administered to immature male ICR mice caused a rapid decrease in hepatic glutathione levels and were lethally toxic to greater than 60% of the animals within 6 d. L-2-Oxothiazolidine 4-carboxylate (OTC), a compound that elevates cellular glutathione levels, administered to mice 6 or 12 h before either helenalin or hymenoxon protected against hepatic glutathione depletion and the lethal toxicity of these toxins. OTC administered at the same time as the sesquiterpene lactones was not protective, suggesting that the critical events against which glutathione is protective occur within the first 6 h. In primary rat hepatocyte cultures, hymenoxon and helenalin (4-16 microM) caused a rapid lethal injury as determined by the release of lactate dehydrogenase. Cotreatment of cultures with N-acetylcysteine at high concentrations (4 mM) afforded significant protection against lethal injury by both toxins. In contrast, BCNU, which inhibits glutathione reductase, or diethylmaleate, which depletes hepatocellular glutathione, potentiated the hepatotoxicity of helenalin and hymenoxon in monolayer rat hepatocytes. These studies suggest that the in vivo and in vitro toxicity of hymenoxon and helenalin is strongly dependent on hepatic glutathione levels, which hymenoxon and helenalin rapidly deplete at very low concentrations.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge