English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology 2006-May

[Role of mitochondrial calcium uniporter in myocardial hypoxia/reoxygenation induced injury].

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Ting-Mei Ye
Shi-Zhong Zhang
Qiang Xia

Keywords

Abstract

OBJECTIVE

To investigate the role and mechanism of mitochondrial calcium uniporter (MCU) in myocardial hypoxia/reoxygenation injury.

METHODS

Isolated rat hearts were perfused with Langendorff apparatus. The hypoxia/reoxygenation injury was achieved by ligation of left anterior coronary artery for 30 min followed by release of ligation for 120 min. The left ventricular developed pressure (LVDP), the maximum rise/fall rate of left ventricular pressure (+/- dP/dt(max)), and the left ventricular end-diastolic pressure (LVEDP) were recorded. Activities of lactate dehydrogenase (LDH) in coronary effluent and reactive oxygen species (ROS) of myocardial mitochondria were spectrophotometrically assayed. Infarct size was determined by TTC staining method.

RESULTS

Compared with the hypoxia/reoxygenation (H/R) group, ruthenium red (RR, 5 micromol/L), given at the on set of reoxygenation, significantly improved the contractile function of left ventricle, decreased the myocardial infarct size, alleviated the production of ROS in myocardial mitochondria and LDH release in coronary effluent. Spermine (20 micromol/L), given at the onset of reoxygenation, enhanced the production of ROS in the mitochondria and LDH release in coronary effluent at 5, 20 and 30 min of reoxygenation, however, there were no significant differences of ventricular contractile parameters and infarct size between groups subjected to hypoxia/reoxygenation with or without spermine treatment. Co-treatment of ROS scavenger N-2-mercaptopropionyl glycine (1 mmol/L) with spermine abolished the effect of spermine.

CONCLUSIONS

Inhibition of mitochondrial calcium uniporter may refrain heart from hypoxia/reoxygenation injury via decreasing the production of ROS in heart mitochondria.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge