English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
The American journal of physiology 1997-Oct

Role of neuronal NO synthase in relationship between NO and opioids in hypoxia-induced pial artery dilation.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
M J Wilderman
W M Armstead

Keywords

Abstract

Nitric oxide (NO) contributes to hypoxia-induced pial artery dilation, at least in part, via the formation of guanosine 3',5'-cyclic monophosphate (cGMP) and subsequent release of Met-enkephalin and Leu-enkephalin in the newborn pig. In separate studies, these opioids were also observed to elicit NO-dependent pial dilation. The present study was designed to investigate the role of the neuronal isoform of NO synthase (NOS) in hypoxic pial dilation, associated opioid release, and opioid dilation in piglets equipped with a closed cranial window. Tetrodotoxin (10(-6) M) attenuated the dilation resulting from hypoxia (PO2 approximately 35 mmHg; 25 +/- 1 vs. 14 +/- 1%). Similarly, 7-nitroindazole, sodium salt (7-NINA, 10(-6) M), a purported neuronal NOS inhibitor, attenuated hypoxic pial dilation (26 +/- 1 vs. 14 +/- 2%). Hypoxic dilation was accompanied by elevated cerebrospinal (CSF) cGMP, which was blocked by 7-NINA (433 +/- 19 and 983 +/- 36 vs. 432 +/- 19 and 441 +/- 19 fmol/ml for control and hypoxia in absence and presence of 7-NINA, respectively). Additionally, hypoxic dilation was also accompanied by elevated CSF Met-enkephalin, which was attenuated by 7-NINA (1,027 +/- 47 and 2,871 +/- 134 vs. 779 +/- 78 and 1,551 +/- 42 pg/ml for control and hypoxia in absence and presence of 7-NINA, respectively). In contrast, Met-enkephalin (10(-10), 10(-8), and 10(-6) M) induced dilation that was unchanged by 7-NINA (7 +/- 1, 12 +/- 1, and 18 +/- 1 vs. 6 +/- 1, 10 +/- 1, and 17 +/- 1%, respectively). N-methyl-D-aspartate (NMDA, 10(-8) and 10(-6) M), an activator of neuronal NOS, induced pial dilation that was blocked by 7-NINA (10 +/- 1 and 20 +/- 2 vs. 1 +/- 1 and 2 +/- 1%, respectively). However, sodium nitroprusside-induced dilation was unchanged by 7-NINA. These data indicate that neuronal NOS contributes to hypoxic pial artery dilation but not to opioid-induced dilation. Furthermore, these data suggest that neuronally derived NO contributes to hypoxic dilation, at least in part, via formation of cGMP and the subsequent release of opioids.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge