English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Planta 1983-Apr

Role of peroxidase in the development of water-impermeable seed coats in Sida spinosa L.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
G H Egley
R N Paul
K C Vaughn
S O Duke

Keywords

Abstract

The seed coats of S. spinosa (prickly sida, Malvaceae) become impermeable to water during seed development on the mother plant. After the seeds have dehydrated during the final maturation stages, piercing of seed coats is necessary to induce imbibition of water and germination. Onset of impermeability occurs during seed coat browning, well in advance of seed dehydration. I. Marbach and A.M. Mayer (1975, Plant Physiol. 56, 93-96) implicated polyphenol oxidase (PO; EC 1.10.3.1) as catechol oxidase in the formation of insoluble polymers during development of coat impermeability in a wild strain of pea (Pisum elatius) seeds. We found, however, that peroxidase (EC 1.11.1.7), not PO, is instrumental in the development of water-impermeable seed coats in prickly sida. We isolated coats and embryos from seeds harvested at several stages of development. Highest peroxidase activity of coat extracts correlated well with the developmental stages of maximum conversion of soluble phenolics to insoluble lignin polymers. Although seed extracts oxidized dihydroxyphenylalanine, this activity was eliminated by catalase, indicating that the oxidation of phenolics in the coat is catalyzed by peroxidase rather than PO. Histochemical localization of peroxidase was strongest in the palisade layer; both the level and time of appearance of activity was proportional to the spectrophotometric assays of seed-coat extracts. The presence of peroxidase and the absence of PO in the seed coat were also confirmed with immunocytochemistry. Our results support the view that peroxidase is involved in the polymerization of soluble phenolics to insoluble lignin polymers during development of prickly sida seed coats, causing the formation of a water-impermeable barrier prior to seed dehydration. As dehydration proceeds, the chalazal area finally becomes impermeable resulting in the hard mature seeds of prickly sida.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge