English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology 2009-Jun

Role of temperature stress on chloroplast biogenesis and protein import in pea.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Siddhartha Dutta
Sasmita Mohanty
Baishnab C Tripathy

Keywords

Abstract

Modulation of photosynthesis and chloroplast biogenesis, by low and high temperatures, was studied in 12-d-old pea (Pisum sativum) plants grown at 25 degrees C and subsequently exposed to 7 degrees C or 40 degrees C up to 48 h. The decline in variable chlorophyll a fluorescence/maximum chlorophyll a fluorescence and estimated electron transport rate in temperature-stressed plants was substantially restored when they were transferred to room temperature. The ATP-driven import of precursor of small subunit of Rubisco (pRSS) into plastids was down-regulated by 67% and 49% in heat-stressed and chill-stressed plants, respectively. Reduction in binding of the pRSS to the chloroplast envelope membranes in heat-stressed plants could be due to the down-regulation of Toc159 gene/protein expression. In addition to impaired binding, reduced protein import into chloroplast in heat-stressed plants was likely due to decreased gene/protein expression of certain components of the TOC complex (Toc75), the TIC complex (Tic20, Tic32, Tic55, and Tic62), stromal Hsp93, and stromal processing peptidase. In chill-stressed plants, the gene/protein expression of most of the components of protein import apparatus other than Tic110 and Tic40 were not affected, suggesting the central role of Tic110 and Tic40 in inhibition of protein import at low temperature. Heating of intact chloroplasts at 35 degrees C for 10 min inhibited protein import, implying a low thermal stability of the protein import apparatus. Results demonstrate that in addition to decreased gene and protein expression, down-regulation of photosynthesis in temperature-stressed plants is caused by reduced posttranslational import of plastidic proteins required for the replacement of impaired proteins coded by nuclear genome.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge