English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
ASN Neuro 2014-Sep

Roles and regulation of ketogenesis in cultured astroglia and neurons under hypoxia and hypoglycemia.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shinichi Takahashi
Takuya Iizumi
Kyoko Mashima
Takato Abe
Norihiro Suzuki

Keywords

Abstract

Exogenous ketone bodies (KBs), acetoacetate (AA), and β-hydroxybutyrate (BHB) act as alternative energy substrates in neural cells under starvation. The present study examined the endogenous ketogenic capacity of astroglia under hypoxia with/without glucose and the possible roles of KBs in neuronal energy metabolism. Cultured neurons and astroglia were prepared from Sprague-Dawley rats. Palmitic acid (PAL) and l-carnitine (LC) were added to the assay medium. The 4- to 24-hr production of AA and BHB was measured using the cyclic thio-NADH method. (14)C-labeled acid-soluble products (KBs) and (14)CO2 produced from [1-(14)C]PAL were also measured. l-[U-(14)C]lactic acid ([(14)C]LAC), [1-(14)C]pyruvic acid ([(14)C]PYR), or β-[1-(14)C]hydroxybutyric acid ([(14)C]BHB) was used to compare the oxidative metabolism of the glycolysis end products with that of the KBs. Some cells were placed in a hypoxic chamber (1% O2). PAL and LC induced a higher production of KBs in astroglia than in neurons, while the CO2 production from PAL was less than 5% of the KB production in both astroglia and neurons. KB production in astroglia was augmented by the AMP-activated protein kinase activators, AICAR and metformin, as well as hypoxia with/without glucose. Neuronal KB production increased under hypoxia in the absence of PAL and LC. In neurons, [(14)C]LAC and [(14)C]PYR oxidation decreased after 24 hr of hypoxia, while [(14)C]BHB oxidation was preserved. Astroglia responds to ischemia in vitro by enhancing KB production, and astroglia-produced KBs derived from fatty acid might serve as a neuronal energy substrate for the tricarboxylic acid cycle instead of lactate, as pyruvate dehydrogenase is susceptible to ischemia.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge