English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmacology and Experimental Therapeutics 2003-Jun

Roles of necrosis, Apoptosis, and mitochondrial dysfunction in S-(1,2-dichlorovinyl)-L-cysteine sulfoxide-induced cytotoxicity in primary cultures of human renal proximal tubular cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Lawrence H Lash
David A Putt
Sarah E Hueni
Renee J Krause
Adnan A Elfarra

Keywords

Abstract

S-(1,2-Dichlorovinyl)-L-cysteine (DCVC) is the penultimate nephrotoxic metabolite of the environmental contaminant trichloroethylene. Although metabolism of DCVC by the cysteine conjugate beta-lyase is the most studied bioactivation pathway, DCVC may also be metabolized by the flavin-containing monooxygenase (FMO) to yield DCVC sulfoxide (DCVCS). Renal cellular injury induced by DCVCS was investigated in primary cultures of human proximal tubular (hPT) cells by assessment of time- and concentration-dependent effects on cellular morphology, acute cellular necrosis, apoptosis, mitochondrial function, and cellular glutathione (GSH) status. Confluent hPT cells incubated with as little as 10 microM DCVCS for 24 h exhibited morphological changes, although at least 100 microM DCVCS was required to produce marked changes. Acute cellular necrosis did not occur until 48 h with at least 200 microM DCVCS, indicating that this is a high-dose, late response. The extent of necrosis was similar to that with DCVC. In contrast, apoptosis occurred as early as 1 h with as little as 10 microM DCVCS and the extent of apoptosis was much less than that with DCVC. Mitochondrial function was maintained with DCVCS concentrations up to 100 microM, consistent with hPT cells only being competent to undergo apoptosis at early time points and relatively low concentrations. Marked depletion (>50%) of cellular GSH content was only observed with 500 microM DCVCS. These results, combined with previous studies showing protection from DCVC-induced necrosis and apoptosis by the FMO inhibitor methimazole, suggest that formation of DCVCS plays a significant role in trichloroethylene-induced renal cellular injury in hPT cells.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge