English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Microcirculation 2017-Oct

Rosa rugosa flavonoids alleviate myocardial ischemia reperfusion injury in mice by suppressing JNK and p38 MAPK.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xuehui Zhang
Yuhui Wang
Wanli Shen
Shangzhi Ma
Wen Chen
Rong Qi

Keywords

Abstract

Although Rosa rugosa has been applied for preventing coronary artery disease, the pharmacological mechanism is little explored. In this study, the effects and mechanisms of Rosa rugosa flavonoids (RRF) on myocardial ischemia reperfusion injury (MIRI) were investigated.

Mice were pretreated by intragastric administration of 600 mg/kg RRF for 7 days. Then MIRI was induced by 45 minutes coronary artery ligation and 3 hours reperfusion. Myocardial infarct size (MIS) and histopathology, activities of myocardial enzymes, and effects of RRF on inflammation and apoptosis were evaluated.

Pretreating the mice with RRF significantly reduced MIS and inhibited activity of plasma myocardial enzymes. Activity of the enzymes associated with anti-oxidation, SOD, and TEAC, and mRNA expression of NOX2 were significantly elevated. RRF pretreatment significantly decreased the translocation of p65 from the cytoplasm into the nucleus and reduced the expression of the pro-inflammatory cytokines, IL-6 and IL-1β. RRF pretreatment also significantly prevented the expression of caspase-3 and Bax, and increased the expression of Bcl-2. And RRF inhibited the phosphorylation of JNK and p38 MAPK.

RRF significantly inhibited MIRI through anti-oxidative, anti-inflammatory, and anti-apoptosis effects, and mechanisms were associated with its inhibition on phosphorylation of JNK and p38 MAPK.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge