English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Chemico-Biological Interactions 2018-Oct

Rutin alleviates hypoxia/reoxygenation-induced injury in myocardial cells by up-regulating SIRT1 expression.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Han Yang
Chao Wang
Lingyan Zhang
Jun Lv
Hongzao Ni

Keywords

Abstract

Rutin possesses multiple pharmacological activities, including the cardioprotective effect. The present study aimed to evaluate the protective effects of rutin on hypoxia/reoxygenation (H/R)-induced myocardial injury and its underlying mechanism involved. H9c2 cells were pretreated with 50 μM rutin or combined with 1 μM silent information regulator 1 (SIRT1) inhibitor (EX-527) for 1 h, and subjected to hypoxia for 6 h, followed by reoxygenation for 24 h. SIRT1 expression was detected by qRT-PCR and western blot. The effects of rutin or combined with EX-527 on cell viability, myocardial injury, apoptotic rate, and oxidative stress in H/R-stimulated H9c2 cells were assayed. The results showed that rutin elevated SIRT1 expression in H9c2 cells, as well as H/R-stimulated H9c2 cells. Rutin increased cell viability in H9c2 cells exposed to H/R. H/R stimulation induced myocardial injury, as evidenced by the increased levels of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB) and aspartate transaminase (AST), which were abolished in the presence of rutin. Rutin attenuated H/R-induced increase of apoptotic rate and caspase-3 activity in H/R-treated cells. Moreover, H/R-induced decrease in the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), and increase in malondialdehyde (MDA) content were reversed by rutin treatment. The presence of EX-527 abolished these protective effects of rutin. In conclusion, rutin protected H9c2 cells against H/R injury through increasing SIRT1 expression. Our findings suggested that rutin might be a potential therapeutic agent for the treatment of myocardial H/R injury.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge