English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Mycorrhiza 2018-Nov

Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Neera Garg
Amrit Bharti

Keywords

Abstract

Salt stress is a major abiotic stress restricting plant growth and reproductive yield. Salicylic acid (SA) and arbuscular mycorrhizal (AM) symbioses play key roles in eliminating adverse effects of salt stress by modulating ion homeostasis and carbohydrate metabolism in crop plants. Sugars synthesized via carbohydrate metabolism act as osmotic adjustors and signaling molecules in activation of various defense responses against salt stress. The present study investigated the role of SA (0.5 mM) seed priming in establishment of AM symbiosis with Rhizoglomus intraradices and the impact on growth, ion-homeostasis, nutrient uptake, and sugar metabolism in Cicer arietinum L. (chickpea) genotypes under salt stress. Salinity had a negative correlation with plant growth and AM symbiosis in both genotypes with more negative effects in relatively salt-sensitive genotype than tolerant. SA enhanced the percent root colonization by significantly increasing the number of arbuscules and vesicles under salt stress. AM symbiosis was more effective in improving root biomass, root to shoot ratio, and nutrient acquisition than SA, while SA was more effective in maintaining ion equilibrium and modulating carbohydrate metabolism and reproductive yield when compared with AM inoculation. SA priming directed the utilization of total soluble sugars (TSS) towards reproductive attributes more efficiently than did AM inoculation by activating TSS metabolic consumption. In AM plants, TSS concentrations were more directed towards sink demand by the fungus itself rather than developing reproductive structures. SA priming further increased sugar export to roots of AM plants, thus favored AM symbiosis. Hence, SA seed priming-induced improvement in AM symbiosis can be a promising strategy in achieving sustainable production of chickpea genotypes under salt stress.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge