English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Biological Chemistry 1999-Dec

Salinity and hyperosmotic stress induce rapid increases in phosphatidylinositol 4,5-bisphosphate, diacylglycerol pyrophosphate, and phosphatidylcholine in Arabidopsis thaliana cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
C Pical
T Westergren
S K Dove
C Larsson
M Sommarin

Keywords

Abstract

In animal cells, phosphoinositides are key components of the inositol 1,4,5-trisphosphate/diacylglycerol-based signaling pathway, but also have many other cellular functions. These lipids are also believed to fulfill similar functions in plant cells, although many details concerning the components of a plant phosphoinositide system, and their regulation are still missing. Only recently have the different phosphoinositide isomers been unambiguously identified in plant cells. Another problem that hinders the study of the function of phosphoinositides and their derivatives, as well as the regulation of their metabolism, in plant cells is the need for a homogenous, easily obtainable material, from which the extraction and purification of phospholipids is relatively easy and quantitatively reproducible. We present here a thorough characterization of the phospholipids purified from [(32)P]orthophosphate- and myo-[2-(3)H]inositol-radiolabeled Arabidopsis thaliana suspension-cultured cells. We then show that NaCl treatment induces dramatic increases in the levels of phosphatidylinositol 4,5-bisphosphate and diacylglycerol pyrophosphate and also affects the turnover of phosphatidylcholine. The increase in phosphatidylinositol 4,5-bisphosphate was also observed with a non-ionic hyperosmotic shock. In contrast, the increase in diacylglycerol pyrophosphate and the turnover of phosphatidylcholine were relatively specific to salt treatments as only minor changes in the metabolism of these two phospholipids were detected when the cells were treated with sorbitol instead of NaCl.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge