English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Naunyn-Schmiedeberg's Archives of Pharmacology 2015-Aug

Salvianolic acid A attenuates TNF-α- and D-GalN-induced ER stress-mediated and mitochondrial-dependent apoptosis by modulating Bax/Bcl-2 ratio and calcium release in hepatocyte LO2 cells.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xiaojing Yan
Zequn Jiang
Lei Bi
Ye Yang
Weiping Chen

Keywords

Abstract

Salvianolic acid (Sal A) is a water-soluble compound extracted from Radix Salvia miltiorrhiza (danshen), which has been widely used to treat acute hepatitis and hepatic damage in traditional Chinese medicine. The aim of the present study was to delineate the antiapoptotic signaling pathways involved in Sal A's hepato-protective action in hepatocyte LO2 cells and to further elucidate the mechanism by which Sal A elicits the antiapoptotic effects on hepatocytes. Here, the study showed that Sal A had antiapoptotic effects on the TNF-α/D-GalN-treated LO2 cells. Moreover, Western blotting demonstrated that the levels of p-eIF2α, ATF4, GRP78, CHOP and caspase-4 were markedly decreased in Sal A group. Additionally, the decrease of the cell mitochondrial membrane permeability and increase of ΔΨm were detected in Sal A-treated cells by high-content screening (HCS) analysis. And the levels of cleaved-caspase-9, cleaved-caspase-3, apoptosis-inducing factor (AIF), Apaf-1, and Cytc (cyto) were downregulated, while Cytc (mito) was upregulated by Sal A via Western blotting. Furthermore, the decreased levels of Bax/Bcl-2 ratio and calcium release were measured in Sal A-treated cells. In summary, Sal A attenuates TNF-α- and D-GalN-induced both ER stress and mitochondrial-dependent apoptosis by suppression of Bax/Bcl-2 ratio and prevention of calcium release, which support the notion that Sal A could be developed into a novel hepatic protectant.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge