English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Natural Medicines 2009-Oct

Saponin fraction from Astragalus membranaceus roots protects mice against polymicrobial sepsis induced by cecal ligation and puncture by inhibiting inflammation and upregulating protein C pathway.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Xing-hua Gao
Xian-xiang Xu
Rong Pan
Ying Li
Yu-bin Luo
Yu-feng Xia
Kazuya Murata
Hideaki Matsuda
Yue Dai

Keywords

Abstract

Sepsis remains the leading cause of death in intensive care units. Uncontrolled systemic inflammation and an impaired protein C pathway are two important contributors to sepsis pathophysiology. Based on the beneficial effects of the saponin fraction from Astragalus membranaceus roots (SAM) against inflammation, liver dysfunction, and endothelium injury, we investigated the potential protective roles and underlying mechanisms of SAM on polymicrobial sepsis induced by cecal ligation and puncture (CLP) in mice. SAM, orally administered 1 h before and after CLP, significantly elevated the survival rate of mice. At 96 h after CLP operation, all mice in the model group died, whereas 33.3% of mice in the SAM (400 mg/kg)-treated group survived. SAM attenuated both inflammatory factors and their abilities to induce tissue dysfunction, which was mainly evidenced by decreased infiltration of polymorphonuclear leukocytes, tissue edema, and lung wet-to-dry weight ratio, lowered levels of myeloperoxidase (MPO), nitric oxide (NO), lactate dehydrogenase (LDH), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in serum, as well as downregulated expressions of iNOS and IL-1beta mRNA in livers. Furthermore, we addressed the effects of SAM on the protein C (PC) pathway, closely linked with sepsis. In CLP-induced septic mice, SAM elevated the impaired expression of PC mRNA in livers. In vitro, SAM reversed the decreased expressions of thrombomodulin (TM) and endothelial PC receptor (EPCR) mRNA induced by lipopolysaccharide (LPS) in endothelial cells. These findings suggest that SAM is able to restore the impaired protein C pathway. Taken together, the current study demonstrates that SAM has protective effects on polymicrobial sepsis in mice. The mechanisms of action involve anti-inflammation and upregulation of the PC pathway.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge