English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Physiology and Molecular Biology of Plants 2011-Apr

Screening of pigeonpea genotypes for nutrient uptake efficiency under aluminium toxicity.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Arbind Kumar Choudhary
Dharmendra Singh

Keywords

Abstract

For increasing pigeonpea production in India, it is necessary to expand its area in non-traditional areas such as north-eastern states, which have considerable area under acidic soils. In such soils, aluminium toxicity, which is a major yield limiting factor, interferes with nutrient uptake efficiency of crop plants. 32 genotypes of pigeonpea [Cajanus cajan (L.) Millsp.] were screened for tolerance to aluminium toxicity at four different aluminium concentrations (41, 82, 123 and 205 μM Al) by hematoxylin staining and root re-growth methods. The results of the two screening methods were consistent, suggesting that either of the two methods could be used for screening purpose. The most tolerant (IPA 7-10, T 7, 67 B and GT 101E) and sensitive (Bahar, Pusa 9 and Pusa 2002-2) genotypes were assessed for root and shoot aluminium contents in hydroponic assay at 0, 41, 82, 123 and 205 μM aluminium concentrations. Root and shoot aluminium contents were significantly lower in the tolerant than sensitive genotypes, indicating that aluminium tolerance mechanism involved aluminium exclusion and perhaps internal detoxification. Tolerant and sensitive genotypes were further assessed for phosphorus, potassium, calcium and magnesium contents in their root and shoot. Tolerant genotypes (IPA 7-10, T 7, 67 B and GT 101E) accumulated significantly high amounts of these nutrients (>1.5 times) compared to the sensitive ones. Better performance of tolerant genotypes could be ascribed to better nutrient uptake efficiency and distribution within the plants.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge