English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pharmacological Research 2014-Jul

Selective inhibition of OCTN2 is more effective than inhibition of gamma-butyrobetaine dioxygenase to decrease the availability of l-carnitine and to reduce myocardial infarct size.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Edgars Liepinsh
Marina Makrecka
Janis Kuka
Helena Cirule
Elina Makarova
Eduards Sevostjanovs
Solveiga Grinberga
Reinis Vilskersts
Daina Lola
Einars Loza

Keywords

Abstract

l-Carnitine is a cofactor in the energy metabolism pathways where it drives the uptake and oxidation of long chain fatty acids (LCFA) by mitochondria. LCFA lipotoxicity causes mitochondrial damage and results in an insufficient energy supply and a decrease in l-carnitine content limits LCFA flux and protects mitochondria. Here, we tested whether the inhibition of GBB dioxygenase (BBOX) or organic cation transporter 2 (OCTN2) is the most effective strategy to decrease l-carnitine content. The activity of 51 compounds was tested and we identified selective inhibitors of OCTN2. In contrast to selective inhibitors of BBOX, OCTN2 inhibitors induced a 10-fold decrease in l-carnitine content in the heart tissues and a significant 35% reduction of myocardial infarct size. In addition, OCTN2 inhibition correlated with the inhibitor content in the heart tissues, and OCTN2 could potentially be an efficient target to increase drug transport into tissues and to reduce drug elimination by urine. In conclusion, the results of this study confirm that selective inhibition of OCTN2, compared to selective inhibition of BBOX, is a far more effective approach to decrease l-carnitine content and to induce cardioprotective effects. OCTN2 could potentially be an efficient tool to increase drug transport in tissues and to reduce drug elimination via urine.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge