English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Developmental Neuroscience 2015

Serial plasma metabolites following hypoxic-ischemic encephalopathy in a nonhuman primate model.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Pattaraporn T Chun
Ronald J McPherson
Luke C Marney
Sahar Z Zangeneh
Brendon A Parsons
Ali Shojaie
Robert E Synovec
Sandra E Juul

Keywords

Abstract

Biomarkers that indicate the severity of hypoxic-ischemic brain injury and response to treatment and that predict neurodevelopmental outcomes are urgently needed to improve the care of affected neonates. We hypothesize that sequentially obtained plasma metabolomes will provide indicators of brain injury and repair, allowing for the prediction of neurodevelopmental outcomes. A total of 33 Macaca nemestrina underwent 0, 15 or 18 min of in utero umbilical cord occlusion (UCO) to induce hypoxic-ischemic encephalopathy and were then delivered by hysterotomy, resuscitated and stabilized. Serial blood samples were obtained at baseline (cord blood) and at 0.1, 24, 48, and 72 h of age. Treatment groups included nonasphyxiated controls (n = 7), untreated UCO (n = 11), UCO + hypothermia (HT; n = 6), and UCO + HT + erythropoietin (n = 9). Metabolites were extracted and analyzed using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry and quantified by PARAFAC (parallel factor analysis). Using nontargeted discovery-based methods, we identified 63 metabolites as potential biomarkers. The changes in metabolite concentrations were characterized and compared between treatment groups. Further comparison determined that 8 metabolites (arachidonic acid, butanoic acid, citric acid, fumaric acid, lactate, malate, propanoic acid, and succinic acid) correlated with early and/or long-term neurodevelopmental outcomes. The combined outcomes of death or cerebral palsy correlated with citric acid, fumaric acid, lactate, and propanoic acid. This change in circulating metabolome after UCO may reflect cellular metabolism and biochemical changes in response to the severity of brain injury and have potential to predict neurodevelopmental outcomes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge