English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of the American College of Cardiology 2002-Apr

Severe energy deprivation of human hibernating myocardium as possible common pathomechanism of contractile dysfunction, structural degeneration and cell death.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Albrecht Elsässer
Klaus Detlev Müller
Woitek Skwara
Christoph Bode
Wolfgang Kübler
Achim M Vogt

Keywords

Abstract

OBJECTIVE

We tested the hypothesis that severe alterations in myocardial energy metabolism play an important role in the pathophysiology of human hibernating myocardium (HHM).

BACKGROUND

It is well established that a disturbed myocardial energy metabolism results in impairments of contractile performance, structure and viability. All of these are important characteristics of HHM.

METHODS

In 16 patients with documented coronary artery disease and impaired left ventricular function, HHM was preoperatively detected by thallium-201 scintigraphy, radionuclide ventriculography and low-dose dobutamine echocardiography. These regions were validated as HHM by their recovery of contractile function three months following revascularization. During open-heart surgery, transmural biopsies were removed from the hibernating areas and analyzed both biochemically and morphologically. These findings were compared to normal human myocardium. All metabolite contents given were normalized for the degree of fibrosis (control: 9.8 +/- 0.5%; HHM: 28.1 +/- 3.0%; p < 0.05), providing myocellular contents.

RESULTS

In HHM, decreased contents (micromol/g wet weight) in adenosine triphosphate (ATP) (control: 4.17 +/- 0.26; HHM: 1.72 +/- 0.25; p < 0.001), creatine phosphate (5.67 +/- 0.70 vs. 0.84 +/- 0.13; p < 0.001) and creatine (27.6 +/- 3.19 vs. 11.2 +/- 1.56; p < 0.0001) were found, but contents in lactate (2.22 +/- 0.26 vs. 25.38 +/- 3.53; p < 0.001), purine bases (0.58 +/- 0.09 vs. 1.26 +/- 0.13; p < 0.001) and protons (pH units: 7.199 +/- 0.01 vs. 6.59 +/- 0.07; p < 0.001) were increased. Levels in adenosine diphosphate, adenosine monophosphate and inorganic phosphate remained unchanged. Energy depletion in HHM was reflected by decreases in the free energy of ATP hydrolysis and in energy charge.

CONCLUSIONS

These data confirm our hypothesis that HHM is energy-depleted myocardium, exhibiting signs of chronic reduction in resting blood flow and a downregulation of energy turnover. The alterations in energy metabolism observed may become operative in triggering and maintaining contractile dysfunction, continuous tissue degeneration and cardiomyocyte loss.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge