English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Journal of Systematic and Evolutionary Microbiology 2002-Sep

Shuttleworthia satelles gen. nov., sp. nov., isolated from the human oral cavity.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Julia Downes
Mark A Munson
David R Radford
David A Spratt
William G Wade

Keywords

Abstract

Nine strains of anaerobic, non-spore-forming, gram-positive bacilli, isolated from the human oral cavity and provisionally identified as belonging to the genus Eubacterium, were subjected to a comprehensive range of phenotypic and genetic tests. Biochemically, they were found to comprise a homogeneous group, and phylogenetic analysis of their 16S rRNA sequences indicated that they constitute a unique branch within the Clostridium-Bacillus subphylum of the phylum Firmicutes. All of the isolates displayed an unusual colonial morphology after extended incubation. This resembled a contaminated culture in that small, secondary colonies were seen to arise around and from within the primary colony form, and a third, independent, colony type was also seen. However, inspection of the colonies by Gram-staining and scanning electron microscopy together with protein profile analysis and 16S rRNA gene sequence comparison of the two independent colony types revealed that only a single organism was present. A new genus, Shuttleworthia, and the species Shuttleworthia satelles gen. nov., sp. nov., are proposed. The cells are saccharolytic, and acetate, butyrate and lactate are produced as end products of glucose fermentation. Aesculin is hydrolysed and indole is produced. The G+C content of the DNA of the type strain is 51 mol%. The type strain is strain DSM 14600T (= CCUG 45864T = VPI D143K-13T).

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge