English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Metabolism: Clinical and Experimental 2017-Oct

Sildenafil Induces Browning of Subcutaneous White Adipose Tissue in Overweight Adults.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Shuguang Li
Yixiang Li
Lin Xiang
Jing Dong
Min Liu
Guangda Xiang

Keywords

Abstract

To investigate that short-term treatment of sildenafil can induce browning of subcutaneous white adipose tissue (sWAT) in human adults.

A randomized, double-blinded, placebo-controlled, parallel group trial.

Sixteen eligibility overweight male subjects were recruited, comparing 100mg/day sildenafil versus an identical placebo therapy for 7days. sWAT samples were collected from subjects before and after 7-day sildenafil or placebo interventions.

The results showed that multilocular UCP1-positive adipocytes existed in sWAT samples from subjects after sildenafil treatment. Compared to before treatment in both group as well as after treatment in placebo, sildenafil significantly decreased adipocyte size, increased the expressions of UCP1 protein and mRNA, mitochondrial density, and leak respiratory capacity in sWAT (p<0.05). Sildenafil also increased plasma cyclic guanosine-3',5'-monophosphate (cGMP) and catecholamine concentrations (p<0.05), and consequently activated the expressions of vasodilator-stimulated phosphoprotein (VASP) and p70 ribosomal S6 kinase 1 (S6K1) (p<0.05). Sildenafil did not activate typical brown fat.

The current findings demonstrate that sildenafil can induce browning of sWAT in human, and this action may be through cGMP-dependent protein kinase I and mechanistic/mammalian target of rapamycin (mTOR) signaling pathways. Sldenafil may be a promising treatment for metabolic disease.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge