English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Anticancer Research

Silvestrol, a potential anticancer rocaglate derivative from Aglaia foveolata, induces apoptosis in LNCaP cells through the mitochondrial/apoptosome pathway without activation of executioner caspase-3 or -7.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Soyoung Kim
Bang Yeon Hwang
Bao-Ning Su
Heebyung Chai
Qiuwen Mi
A Douglas Kinghorn
Robert Wild
Steven M Swanson

Keywords

Abstract

The novel cyclopenta[b]benzofuran, silvestrol, isolated from the fruits and twigs of Aglaia foveolata, has been found to exhibit very potent in vitro cytotoxic activity against several human cancer cell lines. Furthermore, it was active in the in vivo P388 murine leukemia model. In this study, the mechanism of cytotoxicity mediated by silvestrol in the LNCaP (hormone-dependent human prostate cancer) cell line was investigated. Silvestrol induced an apoptotic response, disrupted the mitochondrial trans-membrane potential and caused cytochrome c release into the cytoplasm. Immunoblot analysis indicated that, at the protein level, silvestrol produced an increase of Bcl-xl phosphorylation with a concomitant increase of bak. Furthermore, caspase-2, -9 and -10 appeared to be involved in silvestrol-mediated apoptosis. In contrast, the involvement of caspase-3 and -7 was not detected, either by immunoblot or caspase-3/-7-like activity analysis, indicating that these pathways do not play a crucial role in silvestrol-induced apoptosis. To investigate the relative contribution of the caspases, inhibition of apoptosis with four different cell-permeable inhibitors was studied (Boc-D-Fmk, Z-VDVAD-FMK Z-LEHD-FMK and Z-AEVD-FMK). Only the general caspase inhibitor, Boc-D-Fmk, completely inhibited the formation of apoptotic bodies. In contrast, caspase-2 and caspase-9 selective inhibitors induced about a 40% reduced apoptotic response, whereas the caspase-10 selective inhibitor caused about a 60% reduction in apoptosis compared to silvestrol only treated cells. Taken together, the studies described herein demonstrate the involvement of the apoptosome/mitochondrial pathway and suggest the possibility that silvestrol may also trigger the extrinsic pathway of programmed cell death signaling in tumor cells.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge