English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Applications in Plant Sciences 2016-Aug

Simultaneous analysis of defense-related phytohormones in Arabidopsis thaliana responding to fungal infection.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Katlego B Riet
Nombuso Ndlovu
Lizelle A Piater
Ian A Dubery

Keywords

Abstract

OBJECTIVE

Simultaneous analysis of defense-related phytohormones can provide insights into underlying biochemical interactions. Ultra-high-performance liquid chromatographic (UHPLC) techniques hyphenated to electrospray ionization mass spectrometry (ESI-MS) are powerful analytical platforms, suitable for quantitative profiling of multiple classes of metabolites.

METHODS

An efficient and simplified extraction method was designed followed by reverse-phase UHPLC for separation of seven phytohormones: salicylic acid, methyl salicylate, jasmonic acid, methyl jasmonate, absiscic acid, indole acetic acid, and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. A triple quadrupole multiple reaction monitoring (MRM) method was developed for MS quantification. The methods were applied to analyze phytohormones in Arabidopsis leaf tissue responding to biotic stresses.

RESULTS

Under the optimized conditions, the phytohormones were separated within 15 min, with good linearities and high sensitivity. Repeatable results were obtained, with the limits of detection and quantification around 0.01 ng/μL (∼9 ng/g tissue). The method was validated and applied to monitor, quantify, and compare the temporal changes of the phytohormones under biotic stress.

CONCLUSIONS

Quantitative changes indicate increased production of defense phytohormones from the various classes. The analytical method was useful and suitable to distinguish distinctive variations in the phytohormonal profiles and balance in A. thaliana leaves resulting from pathogen attack.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge