English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Diabetes 2005-May

Single nucleotide polymorphisms in K(ATP) channels: muscular impact on type 2 diabetes.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Li Li
Yun Shi
Xueren Wang
Weiwei Shi
Chun Jiang

Keywords

Abstract

ATP-sensitive K+ channels (K(ATP) channels) play an important role in glucose homeostasis. A single nucleotide polymorphism (SNP) in the Kir6.2 subunit causes a point mutation of Glu23 to lysine and reduces the ATP sensitivity of pancreatic K(ATP) channels. The SNP found in 58% of Caucasians accounts for 15% of type 2 diabetes. Here we show evidence for dysregulations of muscular K(ATP) channels with the E23K variation. We were particularly interested in the channel modulation by intracellular protons, as pH changes widely and frequently in skeletal muscles. Surprisingly, we found that the defect of the E23K variant was more related to pH than ATP. A level of intracellular acidification seen during exercise not only activated the E23K channel more readily than the wild type, but also relieved the channel inhibition by ATP, leading to a vast increase in the channel open-state probability by approximately sevenfold at pH 6.8 over the wild-type channel at pH 7.4. Considering the reduction in sarcolemmal excitability, muscle fatigue, and impairment of muscular glucose uptake found previously by genetically disrupting K(ATP) channels, it is likely that the E23K variant in muscular K(ATP) channels affects systemic glucose homeostasis and poses an important risk factor for type 2 diabetes and obesity.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge