English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Molecular Genetics and Genomics 2004-May

Sinorhizobium meliloti RpoH1 is required for effective nitrogen-fixing symbiosis with alfalfa.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
H Mitsui
T Sato
Y Sato
N Ito
K Minamisawa

Keywords

Abstract

Sinorhizobium meliloti is a root-nodulating, nitrogen-fixing bacterium. An S. meliloti strain that is mutant for the rpoH(1) gene, which encodes a sigma(32)-like protein, elicits the formation of ineffective nodules on the host plant alfalfa. We characterized the rpoH(1) mutant for phenotypes related to symbiosis. Alfalfa nodules formed by the rpoH(1) mutant exhibited greatly reduced levels of acetylene reduction activity compared to the wild-type nodules. Whereas intracellular colonization by rhizobia was observed in a zone just below the apical meristem, we found ultrastructural abnormalities and signs of degeneration of bacteroids within many host cells in the proximally adjacent zone. In the proximal part of the nodule, only a few nodule cells contained bacteroids. In contrast, the rpoH(1) mutant showed normal induction of nitrogen fixation gene expression in microaerobic culture. These results suggest that the rpoH(1) mutation causes early senescence of bacteroids during the endosymbiotic process, but does not affect the invasion process or the synthesis of the nitrogenase machinery. The rpoH(1) mutant exhibited increased sensitivity to various agents and to acid pH, suggesting that RpoH(1) is required to protect the bacterial cell against environmental stresses encountered within the host. Since RpoH(1) was previously reported to be required for the synthesis of some heat shock proteins (Hsps), we examined the transcription of several genes for Hsp homologs. We found that transcription of groESL(5), lon, and clpB after heat shock was RpoH(1)-dependent, and conserved nucleotide sequences were found in the -35 and -10 regions upstream of the transcription start sites of these genes. Although groESL(5) expression is almost completely dependent on RpoH(1), we found that a groESL(5) mutant strain is still capable of normal symbiotic nitrogen fixation on alfalfa.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge