English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Colloids and Surfaces B: Biointerfaces 2017-Oct

Size-dependent effect of cystine/citric acid-capped confeito-like gold nanoparticles on cellular uptake and photothermal cancer therapy.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
Wen Shang Saw
Masaki Ujihara
Wu Yi Chong
Siew Hui Voon
Toyoko Imae
Lik Voon Kiew
Hong Boon Lee
Kae Shin Sim
Lip Yong Chung

Keywords

Abstract

Physiochemical changes, including size, are known to affect gold nanoparticle cellular internalization and treatment efficacy. Here, we report the effect of four sizes of cystine/citric acid-coated confeito-like gold nanoparticles (confeito-AuNPs) (30, 60, 80 and 100nm) on cellular uptake, intracellular localization and photothermal anticancer treatment efficiency in MDA-MB231 breast cancer cells. Cellular uptake is size dependent with the smallest size of confeito-AuNPs (30nm) having the highest cellular internalization via clathrin- and caveolae-mediated endocytosis. However, the other three sizes (60, 80 and 100nm) utilize clathrin-mediated endocytosis for cellular uptake. The intracellular localization of confeito-AuNPs is related to their endocytosis mechanism, where all sizes of confeito-AuNPs were localized highly in the lysosome and mitochondria, while confeito-AuNPs (30nm) gave the highest localization in the endoplasmic reticulum. Similarly, a size-dependent trend was also observed in in vitro photothermal treatment experiments, with the smallest confeito-AuNPs (30nm) giving the highest cell killing rate, whereas the largest size of confeito-AuNPs (100nm) displayed the lowest photothermal efficacy. Its desirable physicochemical characteristics, biocompatible nature and better photothermal efficacy will form the basis for further development of multifunctional confeito-AuNP-based nanotherapeutic applications.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge