English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Analytical Chemistry 1997-Oct

Sol-gel coating technology for the preparation of solid-phase microextraction fibers of enhanced thermal stability.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
S L Chong
D Wang
J D Hayes
B W Wilhite
A Malik

Keywords

Abstract

A novel sol-gel method is described for the preparation of solid-phase microextraction (SPME) fibers. The protective polyimide coating was removed from a 1-cm end segment of a 200 μm o.d. fused-silica fiber, and the exposed outer surface was coated with a bonded sol-gel layer of poly(dimethylsiloxane) (PDMS). The chemistry behind this coating technique is presented. Efficient SPME-GC analyses of polycyclic aromatic hydrocarbons, alkanes, aniline derivatives, alcohols, and phenolic compounds in dilute aqueous solutions were achieved using sol-gel-coated PDMS fibers. The extracted analytes were transferred to a GC injector using an in-house-designed SPME syringe that also allowed for easy change of SPME fibers. Electron microscopy experiments suggested a porous structure for the sol-gel coating with a thickness of ∼10 μm. The coating porosity provided higher surface area and allowed for the use of thinner coatings (compared with 100-μm-thick coatings for conventional SPME fibers) to achieve acceptable stationary-phase loadings and sample capacities. Enhanced surface area of sol-gel coatings, in turn, provided efficient analyte extraction rates from solution. Experimental results on thermal stability of sol-gel PDMS fibers were compared with those for commercial 100-μm PDMS fibers. Our findings suggest that sol-gel PDMS fibers possess significantly higher thermal stability (>320 °C) than conventionally coated PDMS fibers that often start bleeding at 200 °C. This is due, in part, to the strong chemical bonding between the sol-gel-generated organic-inorganic composite coating and the silica surface. Enhanced thermal stability allowed the use of higher injection port temperatures for efficient desorption of less-volatile analytes and should translate into extended range of analytes that can be handled by SPME-GC techniques. Experimental evidence is provided that supports the operational advantages of sol-gel coatings in SPME-GC analysis.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge