English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Die Pharmazie 2015-Mar

Solid lipid nanoparticles containing copaiba oil and allantoin: development and role of nanoencapsulation on the antifungal activity.

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
G Svetlichny
I C Külkamp-Guerreiro
S L Cunha
F E K Silva
K Bueno
A R Pohlmann
A M Fuentefria
S S Guterres

Keywords

Abstract

The aim of this work was to develop solid lipid nanoparticles (SLN) containing copaiba oil with and without allantoin (NCOA, NCO, respectively) and to evaluate their antifungal activity. Nanoparticle suspensions were prepared using a high homogenisation technique and characterised by dynamic light scattering, laser diffraction, nanoparticle tracking analysis, multiple light scattering analysis, high-pressure liquid chromatography, pH and rheology. The antifungal activities of the formulations were tested in vitro against the emergent yeasts Candida krusei and Candida parapsilosis, and the fungal pathogens of human skin Trichophyton rubrum and Microsporum canis. The dynamic light scattering analysis showed z-average diameters (intensity) between 118.63 ± 8.89 nm for the nanoparticles with both copaiba oil and allantoin and 126.06 ± 9.84nm for the nanoparticles with just copaiba oil. The D[4,3] determined by laser diffraction showed similar results of 123 ± 1.73 nm for the nanoparticles with copaiba oil and allantoin and 130 ± 3.6 nm for the nanoparticles with copaiba oil alone. Nanoparticle tracking analysis demonstrated that both suspensions had monomodal profiles and consequently, the nanoparticle populations were homogeneous. This analysis also corroborated the results of dynamic light scattering and laser diffraction, exhibiting a smaller mean diameter for the nanoparticles with copaiba oil and allantoin (143 nm) than for the nanoparticles with copaiba oil (204 nm). The physicochemical properties indicated that the dispersions were stable overtime. Rheology evidenced Newtonian behaviour for both suspensions. Antifungal susceptibility showed a MIC90 of 125 μg/mL (nanoparticles with copaiba oil) and 7.8 μg/mL (nanoparticles with copaiba oil and allantoin) against C. parapsilosis. The nanoparticles with copaiba oil and the nanoparticles with copaiba oil and allantoin presented a MIC90 of 500 μg/mL and 250 μg/mL, respectively, against C. krusei. The MIC90 values were 500 μg/mL (nanoparticles with copaiba oil) and 1.95 μg/mL (nanoparticles with copaiba oil and allantoin) against T. rubrum. Against M. canis, the nanoparticles with copaiba oil and allantoin had a MIC9 of 1.95 μg/mL. In conclusion, nanoencapsulation improved the antifungal activity of copaiba oil, which was enhanced by the presence of allantoin. The MICs obtained are comparable to those of commercial products and can represent promising therapeutics for cutaneous infections caused by yeasts and dermatophytes.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge