English
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Radiatsionnaya Biologiya Radioekologiya

[Some radiobiological effects in higher plants growing at the territory of the East Ural radioactive trace].

Only registered users can translate articles
Log In/Sign up
The link is saved to the clipboard
V I Abramov
A A Stepanova
S A Famelis

Keywords

Abstract

The spontaneous level of cytogenetic damage in three plant species (Achyrophorus maculatus (Scop.) L., Plantago lanceolata L., Plantago media L.) growing at the territory of East Ural radioactive trace was studied. The radiation resistance of plants from radioactive and control nonpolluted sites was determined. The effects of additional fractionated irradiation by different doses and the role of antioxidant systems in the formation of radioprotector effect were examined. It was shown that the level of mutation process in the plant populations growing at the radiation polluted sites is increased compared to the control populations from the pure territory. The additional acute gamma-irradiation of seeds collected from the polluted and pure territories showed the improved radiation resistance of the plants from the polluted territory. In the control population of A. maculatus in the versions with a one-hour interval between fractions, the radiation effect follows the additivity principle; in the same time, at a one-day interval between fractions, a highly significant radioprotective effect manifested most clearly in the experimental population is induced. For higher plants, the enhanced effectiveness of the functioning of antioxidant systems in plants growing at radiation polluted territories was first shown. Thus, the radioprotector mechanisms of low-dose chronic and preliminary irradiation are similar and one of these mechanisms is the activation of antioxidant systems in plants growing under conditions of chronic low-intensity irradiation for long periods of time.

Join our facebook page

The most complete medicinal herbs database backed by science

  • Works in 55 languages
  • Herbal cures backed by science
  • Herbs recognition by image
  • Interactive GPS map - tag herbs on location (coming soon)
  • Read scientific publications related to your search
  • Search medicinal herbs by their effects
  • Organize your interests and stay up do date with the news research, clinical trials and patents

Type a symptom or a disease and read about herbs that might help, type a herb and see diseases and symptoms it is used against.
*All information is based on published scientific research

Google Play badgeApp Store badge